

The facilities of Argonne National Laboratory are owned by the United States Govern-
ment. Under the terms of a contract (W-31-109-Eng-38) between the U. S. Atomic Energy
Commission, Argonne Universities Association and The University of Chicago, the University
employs the staff and operates the Laboratory in accordance with policies and programs formu-
lated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona Kansas State University The Ohio State University
Carnegie-Mellon University The University of Kansas Ohio University

Case Western Reserve University Loyola University The Pennsylvania State University
The University of Chicago Marquette University Purdue University

University of Cincinnati Michigan State University Saint Louis University

Illinois Institute of Technology The University of Michigan Southern Illinois University
University of Illinois University of Minnesota University of Texas

Indiana University University of Missouri Washington University

Iowa State University Northwestern University Wayne State University

The University of Iowa University of Notre Dame The University of Wisconsin

LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on behalf
of the Commission:

A. Makes any warranty or representation, expressed or implied, with re-
spect to the accuracy, completeness, or usefulness of the information contained
in this report, or that the use of any information, apparatus, method, or process
disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages re-
sulting from the use of any information, apparatus, method, or process disclosed
in this report.

As used in the above, "person acting on behalf of the Commission" in-
cludes any employee or contractor of the Commission, or employee of such
contractor, to the extent that such employee or contractor of the Commission,
or employee of such contractor prepares, disseminates, or provides access to,
any information pursuant to his employment or contract with the Commission,
or his employment with such contractor.

Printed in the United States of America
Available from
Clearinghouse for Federal Scientific and Technical Information
National Bureau of Standards, U. S. Department of Commerce
Springfield, Virginia 22151
Price: Printed Copy $3.00; Microfiche $0.65

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, Illinois 60439

C:WRITE, A Reentrant Routine
to Convert Hexadecimal Numbers
to EBCDIC Decimal
by

Conrad E. Thalmayer

Chemistry Division

November 1969

ANL-7634
Mathematics and
Computers

PREFACE

This report describes a conversion routine for the
Sigma 5 or Sigma 7 computer with Floating-Point Option.
It is written in graded format, to be useful to readers of all
levels of interest and sophistication: the general reader,
for example, may profitably read the first one or two sec-
tions; the casual programmer will want to understand the
second and third sections; only a programmer with special
requirements will have need for the details of the fourth sec-
tion, the flow charts, and the program listing.

This routine is independent of the computer operating
system. It was written in XDS SYMBOL in October 1968 and
October 1969.

TABLE OF CONTENTS

Page
B L N RISl R it i ol w8 0 v ww o w0 w3 5
L s 1 IR oS D et G R S S 5
G ASTHENTITEN LY SR R O L NP R PR R 6
SRS RIGA TS CVREANTRA RTEIN 15 i 2 b s sl ae o sis sl 4l e S 6
By RN ERNA T O REANTZAITEDN <50 Jve 0850 0 0 o et ot b i Sodita 7
DEINVINTAR N S iin oo SE N o G S o AR e e it e et oo i ek e s 9
APPENDIXES
A - RloweEharts o0 it o i o e e e e T e s 10
120k BT e e e S e e BRI e S e B e 28
AEGIRTT OW R DG RIN LS o S T e R LR - e BT

B 1 il ,’\.‘,S.li‘;dkr;d.
HADREG
e st

C:WRITE, A Reentrant Routine
to Convert Hexadecimal Numbers
to EBCDIC Decimal

by

Conrad E. Thalmayer

ABSTRACT

This report describes a reentrant, general-purpose
routine for the Xerox Data Systems Sigma 5 or Sigma 7 com-
puter with Floating-Point Option. C:WRITE converts hexa-
decimal numbers of the forms used in the computer into
EBCDIC decimal numbers of desired length in I, E, or ¥ for-
mat. The report explains the need for the routine, describes
its capabilities, presents all the information necessary for
using it, and outlines its structure. The flow charts and
listing are included.

I. THE PROBLEM

In Sigma computers, numbers are hexadecimal. Let us represent
the hexadecimal digits, or "higits," as 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F and
indicate a hexadecimal number by X',..". Then, for example, the number
X'1A' is equal to (1 16') + (10-16°% = 26. Normally, numbers are of
either word (8 higit) or doubleword (16 higit) length and either fixed-point
or floating-point: a fixed-point number, necessarily integral, is equal to
the sum of its higits, each successive higit leftward having been multiplied
by a successively higher power of 16; a floating-point number consists of a
two-higit exponent followed by a 6 (or 14) higit fraction.

Outside computers, numbers are (1) normally decimal, (2) of
variable length, and (3) in several formats, i.e., integral, or with point,
or with point and exponent. Furthermore, (4) they are read from the com-
puter in EBCDIC (Extended Binary Coded Decimal Interchange Code); in
this code, each character is represented by a two-digit number, e.g., '1' is
represented as X'F1' and 'E' is X'C5'.

For output from the computer, a routine is necessary to convert
numbers of the former types into the latter. The routine should be (1) rapid,
(2) brief, (3) versatile enough to satisfy the needs of all programs using it,
(4) convenient to use, (5) capable of yielding output in standard format, and
(6) able to recognize user errors and act appropriately. Most importantly,
(7) the routine must be reentrant, i.e., while it is being used by a program
of given priority it must be interruptible by one of higher priority and

subsequently resumable at the point of interruption; there should be no
limit to the number of programs which might thus be sequentially inter-

rupted while using the routine.

II. GENERAL

C:WRITE satisfies the above requirements. It accepts short (8 higit)
and long (16 higit), fixed-point and floating-point numbers, and converts to
EBCDIC decimal numbers of any desired length in I, F, or E format.

The seven additional requirements listed above are abetted by,
inter alia, the following: (1) This routine carries out only instructions
pertinent to its specific task. It does not employ subroutines. (2) The
twelve tasks are written as overlapping pairs which use data in common.
(3) The given number and the converted number may be at any location,

(4) Only the minimum number of registers is employed, leaving the rest
available to the user. (5)I format output is right-adjusted. (6) The routine
will reject a 'request if the specified output field is too short. (7) The vital
requirement of reentrancy is attained by carrying out all operations in the
computer registers. Upon interruption of a program, the contents of these
registers and the address of the interruption are stored in that program's
Program Description Table (PDT); upon return to the program, the registers
are restored and execution is resumed at the interrupted instruction. This
technique relieves the user of supplying some of his working space to the
routine. Inasmuch as probably every real-time program will use this rou-
tine, this will result in a major saving of core space.

III. EXTERNAL ORGANIZATION

C:WRITE has twelve entry points, bearing labels of the form
xxxWRITE. The first letter of the label, L or S, indicates whether the
given number is long or short; the second letter, F or I, indicates whether
it is floating-point or integer (fixed-point); the third letter, I, E, or F,
indicates the format of the converted number. The register utilization is
as follows:

RO--User's return address

R1--Word address of given number

R2--Byte address of output field

R3--Byte address of end of output field

R4--Byte address of decimal point (F format only)

Thus, for example, if the user branches to LFIWRIT]TZ, the word whose
address is in R1, together with the following word, will be treated as a long

floating-point number; the resultant integral EBCDIC decimal number,
preceded by as many blanks as the field length permits, will be returned
to the byte address given in R2.

The only registers altered by this routine are R1-5 in SII conversion,
R1-6 in SIE, LFI, SFI, LII, LIF, SIF, and R1-7 in LFE, SFE, LIE, LFF,
and SFF,

If the value given in R3 delimits a field of sufficient length, the con-
version will be performed and the Condition Code set to 0. If the output
field is of insufficient length, the routine will abort to the address in RO
and the Condition Code will be set to 1. For xxI conversion, the field must
be long enough to contain the entire number. For xxF, there must be room
for at least the integral portion of the number and the decimal point. For
xxE conversion, at least three spaces must be allowed, yielding the exponent
Exx; a negative exponent requires one more byte. In all three cases, a
negative number requires one additional space for the sign.

IV. INTERNAL ORGANIZATION

C:WRITE consists of six pairs of routines sharing a data pool.
Within each pair, either (a) the short given number is extended and treated
as long or (b) the low-order half of the long number is evaluated by the
Sxx routine. In each routine the result is developed one byte at a time, but
not strictly left-to-right.

In SFEWRITE, the given number is loaded into R4, and R5 is cleared.
If the given number is positive, (R4,5) now has the configuration of a long
floating-point number and the routine branches to LFEWRITE. If the given
number is negative, '-' is put into the output field specified in R2, (R2) is
incremented by 1, (R4) is complemented to give (R4,5) the appropriate
configuration, and the routine branches to LFEWRITE.

In LFEWRITE, the given number is loaded into R4,5; if it is negative,
it is complemented, '-' is put into the output field, and (R2) is incremented.
The routine may now be considered in two parts. In Part 1 the number is
repeatedly multiplied by .1 or 10 until the product lies between 1 and 10; the
number of these multiplications yields the decimal exponent. The routine
now aborts if there is insufficient space for the exponent; otherwise the
exponent is put into the right end of the output field and (R3) is set to the
end of the mantissa field. In Part 2 the units digit is copied, converted to
EBCDIC, and put into the output field, followed by '.'. In the rest of Part 2,
which is iterated for each digit, the number is converted to fixed-point, the
units digit is removed, the remainder is multiplied by 10, and the new units
digit is copied, converted, and put into the output field. (R2) is incremented
by 1 as each byte is developed; if (R2) is then equal to (R3), the routine
exits normally.

In LIEWRITE, the given number is first compared with values,
TENP, of successively smaller powers of 10, found in a table. When a
value of TENP is found that is smaller than the number, it is repeatedly
subtracted from the number until the number is less than TENP, This is
then repeated for successive values of TENP down to 10?, after which the
routine transfers to SIEWRITE. The original value of TENP determines
the exponent, to be later converted by SIEWRITE, and the number of sub-
tractions determines each digit, which is converted and placed in the
output field immediately.

In SIEWRITE, the procedure is as in LIEWRITE, but using "word"
rather than "doubleword" instructions and using division rather than
repeated subtraction to develop each digit. The exponent, whose value
may have been determined in LIEWRITE, is finally converted to EBCDIC
and placed in the output field.

In SFIWRITE, the given number is loaded into R4, 0 is loaded into
R5, and the output field is cleared to blanks., If the number is negative,
that is recorded, space is made for the sign, and the number is comple-
mented. The routine then branches to LFIWRITE,

In LFIWRITE, the given number is loaded into R4,5 and the output
field is cleared to blanks. If the number is negative, that is recorded,
space is made for the sign, and the number is complemented. The given
number is now repeatedly multiplied by .1 until its value is less than 10; at
each multiplication the starting output address, originally (R3), is decreased
one byte. If this value is then lower than (R2), the routine aborts. If the
value of the number is less than 1, it is now set equal to 0. If it had been
found to be negative, - is put into the output field. The units digit is now
removed from the number, converted to EBCDIC, and put into the output
field. The remainder of the number is converted to fixed-point, multiplied
piecemeal by 10, and the cycle is repeated.

In LIIWRITE, the given number is loaded into R4,5, the output field
is cleared to blanks, and the starting output address is set to (R3)-8. If the
number is negative, that is recorded, the starting output address is decre-
mented by 1, and the number is complemented. The given number is now
compared with tabulated powers of 10, from 10’ to 107%; if it is smaller
than any of these, the routine branches to SIIWRITE, Otherwise, the starting
output address is moved left appropriately; if it is lower than (R2), the
routine aborts. If the number is negative, the sign is now put into the out-
put field. The result is then developed by repeated subtraction from the
given number of the power of 10 found above; the number of subtractions
yields the digit, which is converted to EBCDIC and put into the output field;
this cycle is repeated with values down to 10, after which the routine
transfers to SIIWRITE,

In SIIWRITE, the procedure is similar to that in LIIWRITE, The
main difference is that the result is developed by division of the given num-
ber by powers of ten, followed by repeated division of the remainder.

In SFFWRITE, the given number is loaded into R4, 0 is loaded into
R5, and the integer portion of the output field is cleared to blanks. If the
number is negative, that is recorded, space is made for the sign, and the
number is complemented. The routine then branches to LEFFWRITE,

In LEFWRITE, the given number is loaded into R4,5 and the integer
portion of the output field is cleared to blanks. If the number is negative,
that is recorded, space is made for the sign, and the number is comple-
mented. If the given number is not less than 1, it is repeatedly multiplied
by .1 until its value is less than 10; at each multiplication the starting out-
put address, originally the units position, is decreased one byte. If this
value is then lower than the given starting address, the routine aborts. If
the given number has been found to be negative, - isnow putinto the output
field. If the number is less than 1, a point is put into the output field; then
the number is repeatedly multiplied by 10, and 0 is put into the output field,
until either the number is no longer less than 1 or the field is filled. In the
conversion loop proper, the number consists of a units digit and a fraction;
the units digit is removed, converted to EBCDIC, and put into the output
field; the fraction is converted to fixed-point, multiplied piecemeal by 10 to
yield a new units digit, and the cycle is repeated. When the integer portion
of the output field has been filled, a point is inserted and the cycle resumes
until the field is filled.

In LIFWRITE, the address of LIIWRITE is stored, and the routine
branches to SIFWRITE, o

In SIFWRITE, the address of SIIWRITE is stored. Zeros are now put
into the portion of the output field to the right of the desired decimal point
position and the point is inserted. The routine then branches to LIIWRITE
or SIIWRITE.

SUMMARY

C:WRITE is a routine to convert hexadecimal numbers of the forms
used in the computer into EBCDIC decimal numbers in the three usual
formats. The routine is reentrant, general-purpose, convenient, accurate,
economical, and fail-safe.

10

APPENDIX A
Flow Charts

LhES C:WRITE
PAGE 1
C. E. THALMAYER
1068
10768
T
Y

LORD LFNUM

- » OUTFLD
OUTCNT + 1
COMP. LFNUM

0 » EXPNEG

79 + EXP

LFNUM = .1

U

CONVERT EXP
TO DECIMAL
CONVERT EXP2
TO EBCDIC
EXP2 + ENDFLD
ENDCNT - 1

CONVERT EXP1
T0 EBCDIC
EXP1 + ENDFLD
ENDCNT - 1

¥
CONVERT DIGITI
TO EBCDIC
DIGIT1 » OUTFLD
OUTCNT + 1

C:WRITE

PRGE 2

FIX LFNUM1 AND
REMOVE DIGIT1

[CLFNUH1 = 10

LFNUM2
HIGH BIT

REMOVE HIGH BIT
LFNUM1 + S

LFNUMZ = 10
LFNUMZ2 + LFNUM1

CONVERT DIGIT1
TO EBCDIC

DIGIT1 -+ OUTFLD
OUTCNT + 1

il

file:///HIGH

12

0 + LFNUMZ
[0+ Exp |
LORD_SFNUH

- -+ OUTFLD
OUTCNT + 1
COMP. SFNUM

C:WRITE

PRGE 3

ENDCNT - 2
[8+ EXP]
LORD_LINUH

- + DUTFLD
OUTCNT + 1
COMP. LINUM

-1]

C:WRITE

PAGE %

14

LINUM - TENP<I>

DIGIT + 1

CONVERT DIGIT
T0 EBCDIC

DIGIT + OUTFLD
DUTCNT + 1

SIEX

C:WRITE

PAGE S

0 + DIGIT

@

15

C:WRITE

PAGE 6

ENDCNT - 2
[= 1% EXP |
LORD_SINUM

[[SINUM ~ TENPST) |
1
[bouvcnt GUDTIENTI
T0 EBCDIC

1
[DIGIT » OUTFLD |
1
I REMAINDER + |
SINUH

1
[outcnt + 1 |

l .+ OUTFLD |
1
|__OUTCNT + 1]

16

&

o<l

[o+ vLInuml |
1
[[LINUM ~ TENPLID |
1
lGUNVERT ﬂUDTIENTI
TO EBCDIC

|
[DIGIT » OUTFLD |
1
I REMRINDER -+ |
SINUM

1
[outeht + 1]

[o-+outrin]
1
[outeet = 1]

SIE% Ety SIEX

C:WRITE

PAGE 7

| E + OUTFLD |
[OUTGN} + 1]
L EXP ; 10 |
eS|

1

[DIGIT » OUTFLD |
1

| DUTCNT + 1]

1
[?Erv:nr n:nn:unsnl
TD EBCDIC

1
[pieiT » outrLo |

|LFIll

C:WRITE

BLANK + SIGN
LOAD _LFNUM

Y

BLANK -+ SPCFLD
SPCCNT + 1

SPCCNT - 1

PRGE 8
N

SPCCNT -+ OUTCNT

0 + LFNUM

- # DUTFLD
OUTCNT + 1

1l

18

FIX LFNUM1 AND
REMOVE DIGIT1

REMOVE HIGH BIT
LFNUM1 + 5

LFNUMZ = 10 I

LFNUM2 + LFNUM1

C:WRITE

PAGE 9

CONVERT DIGIT1
T0 EBCDIC

DIGIT1 -+ OUTFLD

OUTCNT + 1

file:///HIGH

D

|_BLANK -+ SIGN |
| L}nuna)
|__LORD Eruun]
[ouTcNT - SPCCNT |

Y

[BLANK + SPCFLD |
1
{7 SPCONT +1]

C:WRITE

PRGE 10

[[ENDCNT -+ SPCCNT |

4

[- + SIGN]
1

[spccNT -1]
1

[comP. SFNUM]

o

19

20

C:WRITE

PAGE 11

BLANK -+ SIGN
LORD LINUM
OUTCNT -+ SPCCNT

SPCCNT
< ENDCNT

SPCCNT + 9

BLANK + SPCFLD
SPCCNT + 1

SPCCNT - I

SPCCNT - 8

SPCONT - 1
COMP . LINUM

| 0 + DIGIT

LINUM - TENPSID
DIGIT + 1

C:WRITE

PRGE 12

CONVERT DIGIT
T0 _EBCDIC

DIGIT + SPCFLD

22

BLANK -+ SIGN
LORD_SINUM
DUTCNT -+ SPCCNT

SPCCNT
£ ENDCNT

BLANK -+ SPCFLD
SPCCNT + 1

PRBE 13

C:WRITE

SPCCNT + 1

SPCCNT - 1

COMP . SINUM

<

SPCCNT - I

%

[o-»tuLinumy]
1
[CInum ~ TENPCT) |
) |
[couvcm uuou:ml
T0 EBCDIC
[DIGIT » SPCFLD |
) |
[REMAINDER -+ J
SINUN
Eanem——T
[SpconT + 1 |
1
T G 2|

C:WRITE

PAGE 1%

23

24

BLANK -+ SICN
LOAD LFNUM
OUTCNT <+ SPCCNT

BLANK -+ OUTFLD

COMP . LFNUM

C:WRITE

PRBE 15

LFNUH = .1
OUTCNT - 1

- % OUTFLD
OUTFLD + 1

Y
ENDCNT <+ PLCCNT
. % DUTFLD

0 + OUTFLD

PRGE 16

C:WRITE

FIX LFNUM1 AND
REMOVE DIGIT1

LFNUM1 » 10

LFNUNE
HICH BIT

Y
REMOVE HICH BIT
LFNUN1 + S

LFNUNH2 » 10
LFNUM2 + LFNUM1

J
CONVERT DIGIT1
T0 EBCDIC
DIGIT1 -+ OUTFLD

OUTCNT + 1

N DUTCNT

PLCCNT

N Q
-+ OUTFLD
[ENDCNT -+ PLGCNT]

ENDCNT -+ PLCCNT

25

26

OUTCNT
< PLCCNT

Y

BLANK * DUTFLD
OUTCNT + 1

C:WRITE

PRGE 17

LIFWRITE SIFURITE

|LIIHRIT

C:WRITE

PAGE 18

BV ﬂDRSl lSII“RITF . RDRS!

0 + ENDFLD
ENDCNT - 1

. #» ENDFLD

27

28

APPENDIX B

Listing

e e e e ok e e o e oo ook ook ool o o ok o ok ok ok e R ko ol o ol ook ook ok ook ok ko ok kR Rk ok ok ok Rk ok ok

*
Aok

LA AR 2 B R R R R R R IR IR R BE IR R BE R R R R AR R R R R O

FTEN
FPONE

FONE

EMASK
FMASK
IMASK
HMASK
XMASK
LFEWR

LFEL

C:WRITE

LFEWRITE
SFEWRITE
LIEWRITE
SIEWRITE
LFIWRITE
SFIWRITE
LIIWRITE
SIIWRITE
LFFWRITE
SFFWRITE
LIFWRITE
SIFWRITE

RO L INK

REENTRANT ROUTINE TO WRITE EBCDIC DECIMAL NUMBERS

CONVERTS
CONVERTS
CONVERTS
CONVERTS
CONVERTS
CONVERTS
CONVERTS
CONVERTS
CONVERTS
CONVERTS
CONVERTS
CONVERTS

Pr>PPD>PPEPD>PD>PPPDDP>

C.E.T. 10/17/69

LONG FLOATING HEX NUMBER TO E FORMAT DEC IMAL
SHORT FLOATING HEX NUMBER TO E FORMAT DECIMAL
LONG FIXED HEX NUMBER TO E FORMAT DECIMAL
SHORT FIXED HEX NUMBER TO E FORMAT DECIMAL
LONG FLOATING HEX NUMBER TO I FORMAT DEC IMAL
SHORT FLOATING HEX NUMBER TO I FORMAT DECIMAL
LONG FIXED HEX NUMBER TO I FORMAT DECIMAL
SHORT FIXED HEX NUMBER TO I FORMAT DECIMAL
LONG FLOATING HEX NUMBER TO F FORMAT DEC IMAL
SHORT FLOATING HEX NUMBER TO F FORMAT DECIMAL
LONG FIXED HEX NUMBER TO F FORMAT DECIMAL
SHORT FIXED HEX NUMBER TO F FORMAT DECIMAL

R1 ADDRESS OF THE HEXADECIMAL NUMBER

R2 BYTE ADDRESS OF OUTPUT FIELD

R3 BYTE ADDRESS OF END OF OUTPUT FIELD

R4 BYTE ADDRESS OF DECIMAL POINT (F FORMAT ONLY)

R1-7 ARE ALTERED BY LFE, SFE, LIE, LFF, SFF
R1-6 ARE ALTERED BY SIE, LFI, SFI, LII, LIF, SIF
R1-5 ARE ALTERED BY SII

CONDITION

CODE:

0 NUMBER CONVERTED
1 INSUFFICIENT SPACE FOR OUTPUT

DEF
DEF
DEF
LOCAL
BOUND
DATA
BOUND
DATA
BOUND
DATA
DATA
DATA
DATA
DATA
DATA
IFEMSL 6
LI,7
LD,4
BCR,1
ST8,6
Al,2
LCD, 4
LI,1
CD,4
BCS,1
FMLy 4

LFEWRITE,SFEWRITE,LIEWRITE,SIEWRITE
LEIWRITESFIWRITEZLIIWRITE,STIIWRITE
LFFWRITE,SFFWRITELIFWRITE,SIFWRITE

FTEN, FPONE,FONE,TEN

8

X*41A00000°*,X'00000000"

8

X'40199999',X'9999999A"

8

X*41100000*,X'00000000"
X*00FFFFFF?

X*000000F0Q"*

X*000FFFFF*

X*80000000°"

X*TFFFFFFF*

- FOR MANTISSA AND EXPONENT
0 EXP

*1 LFNUM

CEEL I[F NOT -

0,2 MANTISSA SIGN

1 ADDRESS OF NEXT BYTE
4 MAKE LFNUM +

0 EXPNEG

FTEN

LFE2 IF LESS THAN 10
FPONE

TO PRODUCE XuXXXXXX. .

LFE2

LFE3

LFE4

LFES

LFE6

LFET

LFEB

LFE9

Al,7

B
CDy 4
BCRy 1
Lisl
Al,3
STB.6
Al,3
LW, 6
AND, 6
Cl,6
BCS,3
LI.7

Al,7
FML, 4
CD'“
BCRy 1

LIy6
DW,6
OR,6
STBs6
Al,3
Al.7
STB,7
Al,3
Cl,1

BCRy 1
Al,3
LI,6
STBs6
CWy2
BCR,2
LCl

C“'Z
BCS»1
LC1t

LWy 7
SLSy7
OR,7
STB,7
A['Z
CH'Z
BCSy1
LCcI

LI,7
STB,7
Al'Z
CWy2
BCS,1
Lcl

ANDy 4
LW, 7
MI,7

LFEL
FONE
LFE4
-3
~g
0,3

EMA SK

LFE3
79
LFE4

FTEN
FONE
LFE4
LEE3

TEN
FMASK
0'3
-l
X*F0°
0,3
S

LFES

lEl

INCREMENT EXP

[F NOT LESS THAN 1
EXPNEG SIGNAL

EXP SIGN

FOR ZERO CHECK
FIX

I[F NOT O
EXP

EXP
TO PRODUCE XaXXXXXXXXXXXXX

IF NOT LESS THAN 1

CONVERT TO DECIMAL
CONVERT EXP2 TO EBCDIC

CONVERT EXP1 TO EBCDIC

IF_EXP NOT ~

NEXT BYTE VS. FORBIDDEN SPACE
IF NEXT NOT GREATER
ERROR: INSUFFICIENT SPACE

-
IF NEXT IS SMALLER
OUTPUT: EXX OR E-XX OR —-E-XX
NORMAL EXIT
FOR DIGIT COPYING

CONVERT TO EBCDIC

OQUTPUT: XEXX OR XE-XX OR —-XE-XX
NORMAL EXIT

OUTPUT: X.EXX OR X+E-XX OR =X.E=-XX
NORMAL EXIT

FIX AND REMOVE UNIT DIGIT

LFNUM1

LFNUM1*10

29

CWy5 HMA SK SIGN BIT

BCRy4 LFEA I[F ABSENT
AND,y 5 XMA SK REMOVE BIT
Al,7 5 A*8
LEEA MI,4 10 LFNUM2%10
AW, 4 T LFNUM*10
LWy 7 4 FOR DIGIT COPYING
SLS,7 =20
OR,7 FMASK CONVERT TO EBCDIC
STBy7 042
Al,2 1
CWy2 3
BCSy1 LFE9
LCI 0 NORMAL EXIT
B *0 (END OF LFEWRITE)
SFEWRITE LI,5 0 TO EXTEND SFNUM TO LFNUM
LIy6 = FOR MANTISSA AND EXPONENT
LI,7 0 EXP
LWes *1 SFNUM
BCR,1 LEE1L I[F NOT -: TREAT AS LFNUM
STBy6 0,2 MANTISSA SIGN
Al,2 il ADDRESS OF NEXT BYTE
LCWy 4 4 MAKE SFNUM +
B EEET TREAT AS LFNUM (END OF SFEWRITE)
BOUND 8
TENO9 DATA,8 1000000000
TEN1O DATA X'00000002*yX*540BE400"
TEN11 DATA X*00000017°*,X*4876EB00"
TEN12 DATA X*000000EB* 4 X*'D4A51000"
TEN13 DATA X*00000918*4X*'4ET2A000"
TEN14 DATA X*'00005AF3°*,X*107A4000"
TENL1S DATA X*'00038D7E" yX'A4C68000°"
TEN16 DATA X*'002386F2',X'6FC10000"
TENL17 DATA X*'01634578*,X'5D8A0000"
TENL18 DATA X*ODEOB6B3*,X"AT640000"
LIEWRITE AI,3 =2 0y3 IS FIRST BYTE FORBIDDEN TO MANTISSA
LIy6 8 EXPONENT
LDy4 x]
BCR, 1 LIEO IF NOT -
LI,7 =
STBy7 0,2
Al,2 1
LCD, 4 4
LIEO LIyl 10 INDEX FOR TEN POWERS (=EXP-8)
LIEL CD,y4 TENO9-1,1
BCR,y 1 ISLE2
BDR,y 1 LLE]L
LIs6 =1L FOR SIEWRITE
B SIEO FOR TREATMENT AS SINGLE WORD
LIE2 AW,y 6 1 EXPONENT
CWy2 3
BCR,y2 LIE3
LE1 1 ERROR: INSUFFICIENT SPACE
B *0 ABORT
CIE3 LIL7 0 DG
CW,2 3
BCR, 1 SIEX WRITE EXP ONLY
LIE4 CDy4 TENO9-1,1

BCS,y1 LIES

SDy4 TENO9-1,1

Al,7 1
8 LIE4
LIES AL, 7 X'FO* EBCDIC DIGIT
STB,7 0,2
Al,2 1
CWe2 3
BCR,y 1 SIEX
LI.7 et
STB,7 0,2
Al,2 1
CW,2 3
BCR, 1 SIEX
8 LIE9
LIE6 LT 0
LIET CD,4 TENO9-1,1
BCS,1 LIES
SD»4 TENO9-1,1
Al,7 1
B LIET
LIES AL, 7 X'FO*
STB,7 042
Al,2 1
CHW,2 3
BCR, 1 SIEX
LIE9 BOR, 1 LIE6
LI,1 9
B SIE4 (END OF LIEWRITE: BRANCH TO SIEWRITE)
ONE DATA 1
TEN DATA 10
TEN2 DATA 100
TEN3 DATA 1000
TEN4 DATA 10000
TENS DATA 100000
TENG DATA 1000000
TENT DATA 10000000
TENS DATA 100000000 5
TENS DATA 1000000000
SIEWRITE Al,3 -2 *3 IS FIRST BYTE FORBIDDEN TO MANTISSA
LI,6 -1 EXPONENT
LW,s5 *1
BCR,y1 SIEO IF NOT -
L1 —
STBy4 0,2
Al,2 1
LCW,5 5
SIEO Efel 10 INDEX FOR TEN POWERS (=EXP+1)
SIEL CW,y5 ONE-1,1

BCRy 1 SIE2
BDRy 1 SIE1

Lyl 1 IF SINUM=0
SIE2 AW+ 6 1 EXPONENT

CWy2 3

BCR,2 SIE3 IF NOT BEYOND LIMIT

LcI 1 ERROR: INSUFFICIENT SPACE

B *0 ABORT
SIE3 LIs4 0 QUOTIENT = DIGIT

CWy2 3

BCR,y1 SIEX

32

SIE4

STES

SIE6

SIEX

LFIWRITE

LFIO

LFI7

LFI1

LFi2

DWy4
Al,5
STB,S
LWy5
Als2
CWy2
BCRy 1
STBy4
Al,2
CWy2
BCR,y 1
B
LI,4
DWy 4
Als5
STBs5
LWs5
Al,2
CWe2
BCRy 1
BDR,y 1
LIva
STBy4
Al,2
CW,2
BCS»1
LI.%
STBe 4
Al,2
LI,4
LWy5
Al+5
STBs5
Al,2
ORy4
STBy4
LCI

B
LI+6
LDy4
CWy1
BCRy1
STBy6
Al,1
B
Cly4
BCRy 1
LIy6
Aly1l
LCDy 4
CDy4
BCSy1
FMLy 4
Al,1l
B

ONE-1,1
X'FO" EBCDIC FIRST DIGIT

0s2

X*FO* EBCDIC DIGIT

0s2 EXPONENT FIRST DIGIT

042 EXPONENT SECOND DIGIT
*0 (END OF SIEWRITE AND LIEWRITE)

*1 LFNUM

LFI1 IF NOT —

- SIGN

-1 FOR SIGN

4 MAKE LFNUM +

LFI2 IF LESS THAN 10
FPONE TO PRODUCE XoXXXXXXXXXXXXX
=1 EXPAND OUTFIELD

2 REQUIRED VS. ALLOWED FIRST BYTE ADDRESS

LFI3

LFI8

LFI&

LFIS

LFI6

SFIWRITE

SFIO

SFI1

LITWRITE

LIIo

LII8

BCR,1
LCcI

LW,2
CWeo
BCRy 1
LIy4
Cl+6
BCR,3
STBe6
Al,2

AND, 4
LWyl

MI,1

CWs5

BCR, 4
AND,5
Al,1

MI,4

AWy 4

LWyl

SLSy1
ORy1

STBy1
Al,2

CWy2

BCR,2
tCl

LI,5
LWy4
CWyl
BCR,1
STBy6
Al,1l

Cls4
STHW,3
BCR, 1
LIy6
Al,1
LCWy 4

LIy6
LDy4
LWel
CWyl
BCR,y 1
STB,6
Aly1l

Al,3
Cly4
BCRy1
LIy6
Al,3

LFI3
*0
FONE
LFIB
LFI6
042

LFI6
[MASK

10
HMASK
LFIS
XMA SK
10
-20

FMASK
0,2

LFI4

o
0,1

SFIO
LFI1
—
=1
LFI1
"o
*1
LII8
Oy1

LIIo
=g

0 4

-y

56

INSUFFICIENT SPACE
ABORT
ADDRESS OF NEXT OUTPUT BYTE

ERENO T =
SIGN
INCREMENT BYTE ADDRESS

FIX AND REMOVE UNIT DIGIT
LFNUM1

LFNUM1*10

SIGN BIT

IF ABSENT

REMOVE BIT

A*8

LFNUM2%*10

LFNUM*10

FOR DIGIT COPYING

CONVERT TO EBCDIC
INCREMENT BYTE ADDRESS

NORMAL EXIT
(END OF LFIWRITE)

SFNUM

ADDRESS OF OUTPUT BYTE

IF NOT —: TREAT AS LFNUM

SIGN

FOR SIGN

MAKE SFNUM +

TREAT AS LFNUM (END OF SFIWRITE)

LINUM

IF NOT -

FOR SIGN

34

LIIl
LII2

ELI3

LII4

LIIS

LIl6

117

SIIWRITE

SIIO0

SIié6

Sl
SLn2

SII3

SIi4

SIIS

LCD, 4
LI,y1
CD,4
BCR, 1
BDRy 1
Al,3
LWy4

SW,3
CW,3
BCR,y 1
el

Cly6
BCR,3
STBy6
Al,3
LI,6
CD,4
BCSy1
SDy4
Al,6

Al+6
STB,y6
Al,3
BDR, 1
LIyl

LIy,4
LWy5
LWsl
CWyl
BCR, 1
STBy4
Al,1l

Al,3

Cly5

BCR, 1
LI,&

Al,3

LCW,y5
LI,1

CWe5

BCR, 1
BDR, 1
LIyl

SWy3

CH'3

BCR, 1
el

Cly4
BCR, 3
STBy 4
Al,3
LIy4
DWy4

*0

LI15

0+3

1

0
TENO9-1,1
By
TENO9-1,1
i

LII6

X FEOr

0,3

1

L11S

9

SLIS5
L.

*1

2

3
SII6
0,1
1
SI10
1

0
SIIL
1—

-1

5

10
ONE-1,1
SII3
SIT2
1

1

2

SII4

1

*0

. 8
SIIS
043

1

0
ONE-1,1

MAKE LINUM +
INDEX FOR TEN POWERS
FIND NEXT LOWER TEN POWER

FOR SIIWRITE

FOR SIIWRITE

TREAT AS SINUM

FIRST BYTE ADDRESS

VS. ALLOWED FIRST ADDRESS

INSUFFICIENT SPACE
ABORT

IF NOT -
SIGN

DIGIT

EBCDIC DIGIT

FOR SIIWRITE
TREAT AS SINUM (END OF LIIWRITE)

SINUM

IF NOF -

FOR SIGN

MAKE SINUM +

INDEX FOR TEN POWERS

FIND NEXT LOWER TEN POWER

FOR ZERO
STARTING BYTE ADDRESS
VS. ALLOWED STARTING ADDRESS

INSUFFICIENT SPACE
ABORT

IF NOT -
SIGN

QUOTIENT = DIGIT

LFFWRITE

LFF1

EFF2

LEF3

LFF4

LEFS

LFF6

LEFT

LFF8

EFF9

Al,5
STBsS5
LW,5
Al,3
BDR, 1
LCI

8

LIs6
LW,7
LDy%
LWyl
CWy2
BCR, 1
STB,6
Al.2

Cl,4
BCR, 1
LI,6
Al,2
LCDy4
CW,4
BCS,1
Al,2
AL,7
CD,4
BCSy1
FML, 4
Al,2

CWs2
BCRy 1
LC3

Cl,y6
BCR,+3
STBy6
Al,2

LI,6
CWe4
BCRy1
LW,7
STB+6
LI,1
Al,2
CWy2
BCS,2
FML, 4
CWy4
BCR,1
STBy1

ANDy 4
LWyl
MI,1
CWe5
BCRy 4
AND, 5

X*FO"*
0,3

S1I5

LFF2
042

LFF1

LFF3

=1

FONE
LFF5
i

=
FTEN
LFF5
FPONE
=1
LFF&

LFFé6

*0
LI
LFF7
042

LFF7
FONE
LFFB

0+2
"

LFFD
FTEN
FONE
LFFB
042
LFF8
IMASK

10
HMASK
LFFA
XMASK

EBCDIC DIGIY

REMAINDER

(END OF SIIWRITE)

POINT BYTE ADDRESS

LFENUM

FIRST BYTE ADDRESS

OUTPUT ADDRESS VS. POINT ADDRESS

BLANK INTO OUTFIELD

LFNUM

IF NOT -
SIGN

FOR SIGN
MAKE LFNUM +

IF LESS THAN ONE
UNITS ADDRESS

IF LESS THAN 10
TO PRODUCE XoXXXXXXXXXXXXX
EXPAND OUTFIELD

REQUIRED VS. ALLOWED FIRST BYTE ADDRESS

INSUFFICIENT SPACE
ABORT

IF NOT -
SIGN et
INCREMENT BYTE ADDRESS

IF NOT LESS THAN ONE
END ADDRESS
POINT

INCREMENT OUTFIELD
OUTFIELD VS. ENDFIELD

TO PRODUCE XoXXXXXXXXXXXXX

LERO

FIX AND REMOVE UNIT DIGIT
LFNUM1

LFNUM1*10

SIGN BIT

IF ABSENT

REMOVE BIT

35

36

LFFA

LFFB

LFFC

LFFD

SFFWRITE

SFF1

SFF2

LIFWRITE
SIFWRITE

SIF1
S1iF2

SIF3

Al,1l
MI,4
AWy 4
LWyl
SLSy1
ORy1
STB,y1
Al,2
BCR,2
CW,7
BCR,3
LWy 7
STBy6
B

LEI

B
LI+6
LWe7
LWy4
LIy5
LWyl
CWy2
BCRy 1
STB,y6
Aly2
B
Clv4
BCRy1
LIy6
Al,2
LCWy4
B
LIy5
B
LI,5
LI,6
CW,3
BCRy 2
STBy6
Al,3
8
LIy6
STBy6
Al,3
B

END

5
10

-20
FMASK
042

LFF9
LFFD

042
LFFC

SFF2
0,2
1
SFF1
0
LFF3
11—
-1
&4
LFF3
LITWRITE
SIFL
SIIWRITE
0
4
SIF3
0'3
-1
SIF2
!.l
043
-1
*5

A*8

LFNUM2%*10
LFNUM*10

FOR DIGIT COPYING

CONVERT TO EBCDIC

INCREMENT OUTPUT ADDRESS
VS. UNITS ADDRESS OR END ADDRESS

IF END ADDRESS
END ADDRESS
POINT

NORMAL EXIT
(END OF LFFWRITE)

POINT BYTE ADDRESS

SFENUM

FOR LFNUM

FIRST BYTE ADDRESS

OUTPUT ADDRESS VS. UNITS ADDRESS

BLANK INTO OUTFIELD

LFNUM

IF NOT -: TREAT AS LFNUM

SIGN

FOR SIGN

MAKE SFNUM +

TREAT AS LFNUM (END OF SFFWRITE)
FOR LII CONVERSION

(END OF LIFWRITE)

FOR SII CONVERSION

END ADDRESS VS. POINT ADDRESS
LERO
DECREMENT END ADDRESS

POINT
UNITS ADDRESS
(END OF SIFWRITE)

ACKNOWLEDGMENTS

I am grateful to Paul Day and Henry Krejci for the discussions in
which the approach to the problem was developed,

S

iy e i
L

INA

iigigm

